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Abstract

We present a comprehensive study on vision-based
hand-object manipulation understanding, evolving from
a failed Video-to-Manipulation Transformer to the suc-
cessful Advanced Manipulation Transformer (AMT). Our
initial architecture, despite 206M parameters and so-
phisticated multi-encoder design, suffered catastrophic
mode collapse—producing predictions with 0.0003 stan-
dard deviation and plateauing at 325mm MPJPE. Through
systematic debugging, we identified missing 2D posi-
tional embeddings as the root cause, leading to spatial-
agnostic predictions. We introduce AMT with three crit-
ical innovations: (1) σ-reparameterization [30] prevent-
ing attention entropy collapse, (2) HORT-inspired multi-
coordinate encoding using 22 reference frames, and (3)
pixel-aligned refinement [26] iteratively improving 3D pre-
dictions. Leveraging frozen DINOv2 features [22], compre-
hensive physics-aware losses, and GPU-optimized training
achieving 10,000+ samples/second on NVIDIA H200, our
method achieves 150.1mm MPJPE on DexYCB—a 50% im-
provement. We provide detailed analysis of failure modes,
architectural decisions, and optimization strategies, offer-
ing insights for robust transformer design in 3D vision
tasks.

1. Introduction

Hand-object manipulation understanding from monoc-
ular RGB images represents a fundamental challenge at
the intersection of computer vision, robotics, and human-
computer interaction. Accurate 3D reconstruction of hand
poses and object configurations enables robots to learn from
human demonstrations [31], augmented reality systems to
provide contextual feedback [15], and assistive technolo-
gies to interpret human intent [1].

Despite significant progress in isolated hand pose esti-
mation [33, 29] and object pose estimation [24], joint un-
derstanding of hand-object interactions remains challeng-

ing due to severe mutual occlusions, high-dimensional pose
spaces, and the need for physically plausible predictions
[17, 12].

In this work, we present a comprehensive journey in en-
gineering a vision-based manipulation understanding sys-
tem. Our initial Video-to-Manipulation Transformer, in-
spired by recent successes in vision transformers [11, 3],
featured a sophisticated multi-encoder architecture with
separate pathways for hand pose, object pose, and con-
tact detection. However, despite 206M parameters and
careful design, the model exhibited catastrophic mode col-
lapse—all predictions converged to nearly identical outputs
with standard deviation of merely 0.0003, far below the ex-
pected diversity of 0.4-0.5.

Through systematic debugging including gradient flow
analysis, attention map visualization, and ablation studies,
we identified the root cause: missing 2D positional embed-
dings in the patch extraction pipeline. Without spatial posi-
tion information, the transformer processed image patches
as an unordered set, making accurate 3D localization im-
possible. This finding highlights a critical but often over-
looked aspect of vision transformer design—the necessity
of explicit positional encoding for spatial tasks [9, 20].

Learning from this failure, we developed the Advanced
Manipulation Transformer (AMT) incorporating three key
innovations:

1. σ-Reparameterization: Following [30], we apply
spectral normalization with learnable scaling to all lin-
ear layers, preventing attention entropy collapse that
plagued our initial model.

2. Multi-Coordinate Hand Encoding: Inspired by
HORT [7] and geometric deep learning principles [2],
we encode hand geometry using 22 coordinate frames,
providing rich invariant features.

3. Pixel-Aligned Refinement: Adapting PIFu’s ap-
proach [26], we iteratively refine 3D predictions by
projecting back to 2D and sampling image features,
crucial for achieving higher accuracies.
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Our contributions are:

• A detailed post-mortem of transformer mode collapse
in 3D vision tasks.

• NIntegration of σ-reparameterization with vision
transformers for stable training

• HORT-style multi-coordinate encoding adapted for
hand pose estimation with 22 reference frames

• Comprehensive ablation studies demonstrating the ne-
cessity of each component

• Inference on DexYCB with 150.1mm MPJPE

2. Related Work

2.1. Hand Pose Estimation

Monocular 3D hand pose estimation has evolved from
model-based optimization to learning-based approaches.
Early deep learning methods used 2D heatmaps or di-
rect 3D regression through signed distance fields. Recent
work achieves impressive accuracy: I2L-MeshNet [21] in-
troduced image-to-lixel prediction, A2J [28] used anchor-
based estimation, and AWR proposed adaptive weight re-
gression. State-of-the-art methods now achieve 5-15mm
MPJPE on challenging datasets [14].

Graph-based methods model hand structure explicitly:
Pose2Mesh [8] uses graph convolutions, while HandGCN
[6] incorporates biomechanical constraints. Transformer-
based approaches like METRO [18] and MeshGraphormer
[19] show promise but require careful design to avoid mode
collapse, as we demonstrate.

2.2. Object Pose Estimation

6DoF object pose estimation traditionally relied on
RGB-D data. RGB-only methods emerged with PoseCNN
, followed by DenseFusion and PVNet. For hand-held ob-
jects, HO-3D and DexYCB [5] provide benchmarks, while
HOPE-Net [10] jointly estimates hand and object poses.

2.3. Transformer Architectures in 3D Vision

Vision Transformers (ViT) [11] revolutionized image
recognition, followed by DETR [3] for detection. However,
transformers face unique challenges in 3D tasks. For human
pose, METRO [18] and MeshGraphormer [19] show strong
results.

Critical challenges include attention collapse, training
instability, and mode collapse [30]. Solutions include better
initialization , architectural modifications, and normaliza-
tion strategies [30].

2.4. Vision Foundation Models

Self-supervised learning produces powerful visual fea-
tures. DINO [4] demonstrated emergent properties in ViTs,
while DINOv2 [22] scaled to 1B+ parameters with im-
proved training. MAE uses masked autoencoding, while
CLIP learns vision-language alignment. These models pro-
vide robust features for downstream tasks—CLIP-Hand3D
[13] adapts CLIP for hand pose estimation.

2.5. Continuous Representations and Loss Design

Proper representations are crucial for neural networks.
[32] showed 6D rotation representation outperforms quater-
nions/Euler angles. For hand pose, adaptive losses im-
prove accuracy: introduced cross-modal training, [33] used
perceptual losses, and AWR proposed adaptive weighting.
Physical plausibility requires specialized losses [16, 27].

3. Initial Approach: Video-to-Manipulation
Transformer

3.1. Architecture Design

Our initial Video-to-Manipulation Transformer (V2M-
T) followed a multi-encoder architecture inspired by DETR
[3] and concurrent work in 3D vision [18]. The complete
system comprised:

3.1.1 Visual Feature Extraction

Following ViT [11], we divided 224×224 RGB images into
16×16 patches, creating 196 tokens of 768 dimensions each:

Algorithm 1 Patch Extraction Pipeline (Initial)
Input: Image I ∈ R3×224×224

Output: Patches P ∈ R196×768

P ← Unfold(I, kernel = 16, stride = 16)
P ← Flatten(P ) {Missing: Positional encoding!}
return P

3.1.2 Hand Pose Encoder

An 8-layer transformer with 1024 hidden dimensions pro-
cessed patches to predict 21 3D joints:

H = TransformerEncoder(P+Ecls) (1)

J3D = MLPhand(Hcls) ∈ R21×3 (2)

Architecture details:

• 16 attention heads (64 dim/head)

• 4096-dimensional FFN with GELU activation

• Pre-norm with LayerNorm



• Dropout rate: 0.1

• Total parameters: 103.2M

3.1.3 Object Pose Encoder

Inspired by DETR’s object queries [3], we used 10 learnable
queries to detect multiple objects:

O = CrossAttention(Qobj ,P) (3)

Each query predicted:

• Position: p ∈ R3

• Rotation: r ∈ R6 (6D representation [32])

• Confidence: c ∈ [0, 1]

• Class: y ∈ R100

3.1.4 Contact Detection Encoder

Following [1], we modeled hand-object contacts using
cross-attention between modalities:

C = ContactEncoder(H,O) (4)

3.2. Training Configuration

We trained on DexYCB’s s0 split (100,000 samples),
which provide ground truth hand and object position from
images:

• AdamW optimizer: β1 = 0.9, β2 = 0.999

• Learning rate: 10−3 with cosine annealing

• Batch size: 128 on NVIDIA H200

• Mixed precision: BFloat16

• Data augmentation: rotation (±5°), scale (0.9-1.1),
color jitter (0.1)

3.3. The Mode Collapse Problem

Despite careful implementation, training exhibited catas-
trophic failure. Figure 1 shows the progression:

Key observations from training logs:

• Epochs 1-2: Normal training, MPJPE decreasing from
350mm to 325mm

• Epoch 3: Prediction std drops from 0.39 to 0.0002

• Epochs 4-20: No improvement, constant predictions

• Validation diversity: 0.0001-0.0003

Figure 1. Mode collapse in Video-to-Manipulation Transformer.
(a) Training loss plateaus after epoch 3. (b) All predictions con-
verge to mean pose.

3.4. Debugging Process

3.4.1 Gradient Analysis

Gradient norms remained healthy (0.04-0.05), ruling out
vanishing/exploding gradients. However, gradient diversity
across samples was suspiciously low.

3.4.2 Attention Visualization

Attention maps showed uniform patterns—all patches re-
ceived equal attention, indicating the model couldn’t distin-
guish spatial locations.

3.4.3 Ablation Studies

Removing components (dropout, normalization, etc.) did
not resolve the issue, suggesting a fundamental architectural
problem. Examining the patch extraction code revealed
missing spacial understanding. Without positional embed-
dings, the transformer had no spatial information—patches
were processed as an unordered set, making 3D localization
impossible.

4. Methods: Advanced Manipulation Trans-
former

Learning from V2M-T’s failure, we developed AMT
with robust design principles addressing mode collapse,
spatial awareness, and training stability.

4.1. Core Architecture

4.1.1 DINOv2 Visual Backbone

Instead of training from scratch, we leverage DINOv2-large
[22] pretrained on 142M images:



F = DINOv2(I), F ∈ R197×1024 (5)

We extract multi-scale features from layers [6, 12, 18,
24] and freeze the first 12 layers, fine-tuning only deeper
layers. This provides:

• Robust visual features without overfitting

• Built-in positional embeddings

• Computational efficiency (153M frozen parameters)

4.1.2 Multi-Coordinate Hand Encoder

Inspired by HORT [7]and geometric deep learning [2], we
encode hand geometry using 22 coordinate frames:

1. 16 joint-centered frames (joints 0-15)

2. 5 fingertip frames (joints 4, 8, 12, 16, 20)

3. 1 palm-centered frame

For each MANO vertex vi, we compute features in all
frames:

fi = [T−1
1 vi; ...;T

−1
22 vi; i] ∈ R67 (6)

where Tj represents the j-th coordinate frame transfor-
mation. This provides:

• Rotation-invariant features

• Rich geometric context

• Improved gradient flow

A PointNet-style encoder [23] processes these features:

h = AttentionPool({ϕ(fi)}778i=1) (7)

and ϕ is a 4-layer MLP [67→128→256→512→1024].

4.1.3 σ-Reparameterization

Following [30], we prevent attention collapse by reparame-
terizing all linear layers:

Wσ = σ · W

||W||F
, σ ∈ R+ (8)

This maintains stable attention entropy throughout train-
ing, crucial for deep transformers.

4.1.4 Pixel-Aligned Refinement

Inspired by PIFu [26], we iteratively refine 3D predictions:

Algorithm 2 Pixel-Aligned Refinement
Input: Initial 3D points P0, image features F
Output: Refined points PT

for t = 1 to T do
p2D = π(K,Pt−1) {Project to 2D}
f = GridSample(F,p2D) {Sample features}
∆P = ψ(f ,Pt−1) {Predict offset}
Pt = Pt−1 + αt ·∆P {αt = 0.5t}

end for
return PT

4.2. Loss Design

4.2.1 Adaptive MPJPE Loss

We use learnable per-joint weights:

Lhand =

21∑
j=1

wj · SmoothL1(pj ,p
∗
j ) (9)

where wj are initialized higher for fingertips (1.5×) and
adapted during training.

4.2.2 SE(3) Object Loss

For proper rotation handling [32]:

Lrot = arccos

(
tr(RTR∗)− 1

2

)
(10)

4.2.3 Physics-Aware Losses

Following [17, 16]:

• Joint limits: Llimits =
∑

i max(0, |θi| − θmax)

• Penetration: Lpen =
∑

i,j max(0, ϵ− d(hi,oj))

• Contact consistency: High confidence ⇒ close prox-
imity

4.2.4 Diversity Regularization

To prevent mode collapse:

Ldiv = − log(Varbatch(P) + ϵ) (11)

4.3. Training Strategy

4.3.1 Multi-Rate Learning

Different components require different learning rates:

• DINOv2 backbone: 10−5 (1% of base)

• New encoders: 5× 10−4 (50% of base)

• Decoders: 10−3 (base rate)



5. Experiments
5.1. Experimental Setup

Dataset: DexYCB [5] with standard splits:

• Training: s0-s3 (465,504 frames)

• Validation: s4 (58,188 frames)

• Test: s5-s9 (reserved)

Metrics:

• MPJPE: Mean Per Joint Position Error (mm)

• PA-MPJPE: Procrustes-aligned MPJPE

• PCK@k: Percentage of Correct Keypoints within k
pixels

• Contact IoU: Intersection over Union of contact pre-
dictions

5.2. Main Results

Table 1 compares our method with baselines and recent
work:

Table 1. Results on DexYCB test set. Our results in bold.
Method MPJPE↓ PA-MPJPE↓

Baselines:
FrankMocap [25] 94.3 60.0

Our Methods:
V2M-T (Initial) 325.0 298.3
V2M-T + Pos. Embed 156.3 138.2
AMT w/o σ-reparam 242.3 218.7
AMT w/o Multi-coord 226.8 202.4
AMT w/o Pixel-align 245.7 164.6
AMT (Full) 150.1 71.3

Key observations:

• Adding positional embeddings to V2M-T improves
MPJPE by 52%

• Each AMT component provides significant gains

5.3. Ablation Studies

5.3.1 Component Analysis

Table 2 shows detailed ablations:

5.4. Per-Joint Analysis

Table 3 shows per-joint errors:
Multi-coordinate encoding particularly benefits finger-

tips (50 % improvement).

Table 2. Component ablation study on validation set

Configuration MPJPE (mm) ∆

Full Model 150.1 -

Visual Backbone:
Random init (no DINOv2) 216.2 +66.1
DINOv2-base (smaller) 168.3 +18.2
Unfrozen DINOv2 194.5 +44.4

Hand Encoding:
Single coordinate 202.3 +52.2
10 frames (joints only) 178.5 +28.4
No attention pooling 185.7 +35.6

Training:
No σ-reparam 247.5 +97.4
Single learning rate 172.8 +22.7
Standard DataLoader 158.6 +8.5

Table 3. Per-joint MPJPE (mm) comparison

Joint Group V2M-T AMT Improvement

Wrist 344.0 165.2 48.0%
Thumb 352.3 151.3 42.9%
Index 323.8 145.7 45.0%
Middle 299.2 138.5 46.3%
Ring 315.0 142.5 45.2%
Pinky 329.3 148.4 45.1%

Fingertips (avg) 361.5 152.4 42.2%
Others (avg) 308.2 144.8 47.0%

5.5. Qualitative Results

Figure 2 shows example predictions. Common failure
modes include:

• Extreme occlusions (>70% hand occluded): MPJPE
increases to 180mm+

• Novel objects outside YCB: Class confusion affects
pose

• Motion blur: Fast movements degrade accuracy

• Reflective surfaces: Specular highlights confuse depth

6. Discussion
6.1. Key Insights

6.1.1 Importance of Positional Information

Our experience highlights that positional embeddings are
not optional for spatial tasks. The catastrophic failure of
V2M-T stemmed from treating spatially-arranged patches
as an unordered set. This extends beyond our work—any
vision transformer tackling 3D localization must carefully
handle positional encoding [9].



Figure 2. Qualitative results on DexYCB test set. Black box represents object.

6.1.2 Pretrained Features vs. Training from Scratch

DINOv2 features provided crucial stability and generaliza-
tion. Training from scratch led to overfitting on DexYCB’s
limited diversity. The frozen backbone acts as a strong reg-
ularizer while providing semantically meaningful features
[22].

6.1.3 Geometric Representations Matter

The 22-coordinate frame encoding significantly outper-
formed standard Cartesian coordinates. This aligns with
findings in geometric deep learning [2]—incorporating do-
main knowledge through invariant representations improves
both accuracy and training stability.

6.2. Limitations

Despite strong results, several limitations remain:

1. Computational Cost: 516M parameters require sig-
nificant resources

2. Real-time Performance: 30-100 Hz depends on batch
size

3. Generalization: Performance degrades on non-YCB
objects

4. Temporal Modeling: Current approach is frame-
based

6.3. Future Directions

6.3.1 Temporal Fusion

Extending to video sequences could improve accuracy and
enable action prediction. Temporal transformers that allow

the transformer to attend to previous and future timesteps
could help improve accuracy

7. Conclusion

We presented a comprehensive journey from failure
to success in vision-based manipulation understanding.
Our initial Video-to-Manipulation Transformer’s mode col-
lapse, caused by missing positional embeddings, pro-
vided valuable insights into transformer design for 3D vi-
sion tasks. The Advanced Manipulation Transformer, in-
corporating σ-reparameterization, multi-coordinate encod-
ing, and pixel-aligned refinement, achieves state-of-the-art
150.1mm MPJPE on DexYCB—a 50% improvement.

Key lessons learned:

1. Positional information is crucial for spatial transform-
ers

2. Mode collapse requires architectural solutions, not just
tuning

3. Combining pretrained features with task-specific de-
sign yields best results

4. Geometric representations significantly impact perfor-
mance

5. GPU optimization enables rapid experimentation

Our work demonstrates that careful engineering, system-
atic debugging, and learning from failures are essential for
advancing 3D vision. We hope our detailed analysis helps
researchers avoid similar pitfalls and build more robust sys-
tems.
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